

Dazzle Technologies Corp.
20781 Rainsboro Dr.

Ashburn, VA 20147 USA
Phone: 703-858-0808 Fax: 703-858-0799

Visit our web sites: www.dazzletech.com and www.authorware.com E-mail: jganci@dazzletech.com

Excerpt from Extending Authorware, by Joseph
Ganci and Christopher Swenson

Authorware, Heal Thyself – Use
Authorware Scripts to Fix and Change
Your Files (excerpt)

Authorware has many functions that you can use to create
scripts that will dive through your code, hunting for specific
targets and change them. These scripts are often called ‘bots,
short for robots. They go through your code, hunt for specific
targets you specify, and return information to you, change
your code, or both.

1. These code hunters can save you an enormous amount of

time. Correctly written, the investment in their creation
pays back in dividends because it allows you to avoid the
monotonous task of having to update or change multiple
instances of code one by one. This is one way that experts
distinguish themselves from novices. While the novice is
laboring away repeating the same task over and over, the
expert writes a script once, and lets it go to town.

2. Novices should not feel as if experts are hiding some big
secret from them. The reason novices aren’t simply told
how to create these ‘bots is that they are difficult to write
before a good deal of understanding of Authorware
scripting is achieved. Are you ready? Ready or not, here
we go!

3. So what is the mystery? The whole secret behind creating
a ‘bot is to take advantage of Authorware’s functions and
variables that tap into the properties of each icon and to
understand the relationships between icons. It has always
been possible to access some of the properties of
Authorware icons through a script. For example, even in
version 1 of Authorware, you could use:

DisplayIcon(IconID@”my turtle”)

4. The above allows you to show the contents (one of the
properties) of the “my turtle” icon from any script in the
file.

5. With each new version of Authorware, more and more
properties have become accessible. Authorware 6 brought
us a bonanza of new open properties, which allows us to
write ‘bots like never before. Many of the ones used in
creating Knowledge Objects and Commands (discussed
later) can be used to create simple script ‘bots as well. As
your ‘bots are meant to run as programmer aids, that
means they will be set up to run only in source mode,
which means you are not restricted by the rule that some
of the functions can’t be run in packaged mode. In other

words, you have full access to everything that is
accessible.

6. Some but not all of the functions that can be useful in the

creation of ‘bots include the following.

Working with icons: ClearIcons
CopyIcons
CutIcons
GetLibraryInfo
GetPasteHand
GetSelectedIcons
GroupIcons
ImportMedia
InsertIcon
PasteIcons
PasteModel
SelectIcon
SetIconTitle
UngroupIcons

For manipulating Calc scripts: GetCalc
GetFunctionList
GetInitialValue
GetVariable
GetVariableList
SetCalc

For checking icon contents: GetIconContents
For checking with whole file: GetFileProperty

IsCourseChanged
IsLibraryChanged
OpenFile
OpenLibrary
PackageFile
PackageLibrary
SaveFile
SaveLibrary

7. Often, a client will come back to you after you have

finished an 80-lesson course, where each lesson is in its
own separate file. The client may then request a change
that requires you to enter each lesson and make changes,
often to multiple places in each file. This invariably leads
to the following:

• The programmer spends a good deal of time doing

very monotonous (and expensive) work.
• Being human, the programmer will miss one or more

places where the change was to take place.
• A total Quality Assurance (QA) cycle must take

place on each lesson to ensure that the programmer
didn’t miss anything or didn’t cause more problems
to occur through a late-night slip of the mouse.

8. While you can never totally avoid QA cycles, correctly

writing a ‘bot to make the changes for you, when
possible, will lead to smoother QA reports since a
correctly written ‘bot will:

• Perform the work very quickly.
• Not miss any place where the change was to take

place (if correctly written).

Visit our web sites: www.dazzletech.com and www.authorware.com E-mail: jganci@dazzletech.com

• Not complain about working late nor demand a raise.

9. Let’s create a simple ‘bot. We have just received a set of
Authorware files from a new client. The client tells us,
“These files have been around for a while and the
company that originally created them has now been
bought out by Bill Gates and subsequently was closed.
Every programmer has mysteriously vanished without a
trace. We need you to make changes to these files.”

10. The client has asked that to start, every Calculation icon
in each file should include a running set of comments
showing the history of changes made to the script it
contains. This is a good idea that expert programmers
often use. The history might show, for example:

-- 4/22/2002 Pedro Gonzalez
-- I changed all of the occurrences of “mean old boss” to “kindly
 --despot”
-- 4/23/2002 Susan Orbitz
-- “kindly despot” was rejected in favor of “respected tyrant”.
Changes have been made.

11. This kind of history can be very helpful in tracking
changes (and knowing who to blame ☺). The client has
requested that we start this commentary by adding the
following lines to the end of every script in every Calc
icon:

-- [Today’s Date] Start of History
-- Please place any changes you make to this script below
-- Place the date, then your name on one line
-- Follow it with your comments on subsequent lines

12. We could hunt down every Calculation icon in each file
and paste the above four lines at the end of each script,
but we’re a bit nervous about missing some of the
Calculations, especially those that are ornaments to other
icons, because the client has threatened us with
nonpayment if we miss even one Calculation icon (pretty
mean, huh?).

13. To start, we know we’re going to need to dive through the
file and find every Calculation icon. To do this, we will
use a dive script. Macromedia has provided one that we
can use.

14. Second, we know we’re going to need to:

• Touch every Calculation icon,
• Grab its contents,
• Add our new lines to the end of the contents, and
• Place the script back into the Calc icon.

15. That should do it! Let’s start with a slightly modified
version of the standard Macromedia dive routine.

Dive[#BranchList] := [RootIcon ^ ", 0"]

repeat while ListCount(Dive[#BranchList]) > 0
 Dive[#ParentIcon] := GetNumber(1, Dive[#BranchList][1])

 repeat with Dive[#ChildNum] := 1 to
 IconNumChildren(Dive[#ParentIcon],

 GetNumber(2,
 Dive[#BranchList][1]))
 Dive[#ChildIcon] := ChildNumToID(Dive[#ParentIcon],
 Dive[#ChildNum], GetNumber(2,
 Dive[#BranchList][1]))
 if IconType(Dive[#ChildIcon]) = 4 |=5 |=6 |=9 |=10 then
 AddLinear(Dive[#BranchList], Dive[#ChildIcon] ^", 0")
 else if IconType(Dive[#ChildIcon]) = 12 then
 AddLinear(Dive[#BranchList], Dive[#ChildIcon] ^", 0")
 AddLinear(Dive[#BranchList], Dive[#ChildIcon] ^", 1")
 AddLinear(Dive[#BranchList], Dive[#ChildIcon] ^", 2")
 end if

--------------------------------- Do custom stuff here --------------------------

 if GetCalc(Dive[#ChildIcon]) <> "" then
 AddLinear(Calcs, Dive[#ChildIcon])
 end if
---------------------------------- end of doing stuff -----------------------------
 end repeat
 DeleteAtIndex(Dive[#BranchList], 1)
end repeat

16. The above script starts at the root of the file and finds
every icon. It does not automatically create a list of each
icon. Instead, it presents each icon in turn at the start of
the comment line “Do custom stuff here” at which point
you can deal with the icon any way you wish. The icon is
presented by its ID number, which is stored in the
property list index Dive[#ChildIcon].

17. Note how the dive occurs.
• The BranchList property of the Dive list keeps a

running list of any icons that are encountered.
• Once an icon has been checked, its id is deleted from

the list. Think of it as a First In, First Out (FIFO) line.
As people line up outside a movie theater, the person
at the front of the line pays for his ticket, and then
enters the theater, therefore disappearing from the
line. The last person in the line is the last to disappear
from the line. As each person reaches the front of the
line, the question arises as to whether that person has
children. If children exist, they get added to the end
of the line. If those children have children in turn (in
essence the grandchildren of the first person), they
also get added at the end of the line when their
parents reach the front of the line.

• Similarly, the dive code uses a FIFO approach.
Whenever a Map, Framework, Interaction, Decision,
Digital Movie or Sound icon is found, it gets added to
the list so that its children can be later checked as
well. In the case of all parent icons except
Frameworks, the icon is added with a “,0”, which
will indicate that we should check its children. In the
case of Framework icons, however, there are three
sets of potential children: those attached to the
Framework, those in the Framework’s entry pane,
and those in its exit pane, so we add a Framework’s
icon id three times, in each case adding “,0”, “1”, or
“,2” to the end of the icon id.

• Note that if the icon found is not a parent, the inner
repeat loop doesn’t occur, as there are no children.

Visit our web sites: www.dazzletech.com and www.authorware.com E-mail: jganci@dazzletech.com

• The outer repeat loop will keep going while the
BranchList list is not empty. Every time we have
finished dealing with an icon, notice at the bottom of
the script that it gets deleted from the list (our friend
at the start of the line has entered the theater). When
there are no more icons left in BranchList, then we
have finished our dive.

• The inner repeat loops once for each child found in a
parent icon so you can choose to deal with the
specific child.

18. An easy way to see how the code touches each icon is

to use Trace(IconTitle(Dive[#ChildIcon])) in the
custom portion of our script. This is an example from
a different file.

19. We did this by placing the following line in the custom
section.

Trace(IoncTItle(Dive[#ChildIcon]))

20. We’re not checking if the icon is a Calculation. Instead
we’re asking if the contents of the Calculation are not
empty. If it isn’t, then we will add the icon to our list to
modify its contents at the bottom of our script. Note that
this will work whether the icon is a Calculation or
whether a Calculation ornament is attached to any other
icon. Woo-hoo!

21. Finally, the repeat loop at the bottom will attach the new

four-line comment to the bottom of the script of each
Calculation icon or ornament that was found. It uses the
GetCalc function again to obtain the contents of the
Calculation, adds the comments, and proceeds to use the
result as an argument to the SetCalc function to change
the contents.

22. Once we have finished with our dive, we will have a list
called Calcs that will contain the icon ID of every icon
that is either a Calculation icon or has a Calculation
ornament attached to it. We can now apply the following
to add our comments to the end of each Calculation script
once we run our file.

-- change each Calc icon
repeat with i := 1 to ListCount(Calcs)
 SetCalc(Calcs[i], GetCalc(Calcs[i]) ^ "-- " ^ Date
 ^ " Start of History\r" ^ ¬
 "-- Please place any changes you make to this
 script below\r" ^ ¬
 "-- Place the date, then your name on one
 line\r" ^ ¬
 "-- Follow it with your comments on subsequent
 lines\r\r")
end repeat

23. The above script runs through the Calc list. Everything
inside the repeat loop is actually on one script line
(divided up here for legibility). It uses the SetCalc
function, which changes the contents of a Calculation
icon or ornament. It takes two arguments. The first is the
ID number of the Calculation icon to change, the second
is the data you wish to place in the icon. The data in this
case we obtain by first using the GetCalc function to grab
the current contents of the Calculation. That data gets
concatenated to the four data lines we wish to add, and the
whole thing gets used as the second argument to SetCalc.

24. Note that every time you run this script, it will add a new
set of comments to the end of every Calculation script.
You can further enhance this code by making sure the
comments don’t already exist in a Calculation before
adding them. You can use the GetCalc and Find functions
to do this. This would be a good exercise for you to try.

The file AddCommentsBot.a6p contains this script for you to
peruse. Add the first Calc to any file. Have fun!

Visit our web sites: www.dazzletech.com and www.authorware.com E-mail: jganci@dazzletech.com

Authorware Extensions 1 & 2
By Joseph Ganci & Christopher Swenson - Due December 2001 and offers all of the following

Using Extensions in Authorware
Using Internal Scripts, Knowledge Objects, Commands, U32s
and DLLs, XTRAs, and ActiveX Controls

1. Using Internal Scripts
a. Authorware, Heal Thyself – Use Authorware Scripts to Fix and

Change Your Files
b. Pop ‘n’ Fresh Scripts – Create Reusable Routines, Pop them in and

Go Have Fun!
c. Increase Your Property Values – Use Property Lists to Get Rid of

Authorware Headaches
d. Exercise

2. Using Knowledge Objects
a. Annoying, but Useful - The Knowledge Object Window
b. Useful, Really? – Yes, Really, Windows Controls
c. Robotics Made Easy – Knowledge Object ‘Bots
d. Exercise

3. Using Commands
a. Speedy Gonzalez – The Command Menu
b. Become a Media Mogul – The Find Media Command
c. So Much To Do, So Little Time – The ToDo Command
d. Exercise

4. Using U32s and DLLs
a. Link a Library Dynamically Today – What is a DLL?
b. Me32, You32 – What is a U32?
c. Back that Truck Up – Loading DLLs and U32s
d. Convert the Heathen – A DLL that Converts Miles
e. Feel the Magic – A U32 for Changing Your App’s Shape
f. Choices, Choices – Use the Windows Controls U32 Directly
g. Exercise

5. Using XTRAs
a. XTRA, XTRA, Read All About It – What is an Xtra?
b. Converting Acronyms – Loading Application Xtras
c. Quickly Now – Using the QuickTime Xtra
d. Ooh, Aah – Using Transition Xtras
e. IO, IO, It’s Off to Work I Go – Loading Function Xtras
f. Buddy, Can You Spare a Dime - The BuddyAPI Xtras
g. Exercise

6. Using ActiveX Controls
a. Keep Yourself Active – What is an ActiveX Control?
b. Become a Media Mogul Again – Loading an ActiveX Control
c. Ah, Finesse – Using ActiveX Functions to Customize
d. Exercise

Building Extensions with Authorware and Delphi
Creating Knowledge Objects and Commands in Authorware
Creating U32s in Delphi

7. Creating Knowledge Objects
a. Learn the Lay of the Land – The Knowledge Object Template
b. Function Under Stress - KO Functions & Variables
c. Pilot a Submarine – Using the Macromedia Dive Routine
d. Play God – Creating Your First Knowledge Object
e. Date Cindy Crawford – Using the Model Palette
f. Conjure Merlin – Tying the Wizard to Your KO
g. Can I See Some ID? – Creating Your KO ID
h. Bite the Mailman – Distributing Your KO
i. Exercise

8. Creating Commands

a. Take a Picture – Developing Commands
b. Command the Forces – Creating Your First Command
c. Bite the FedEx Guy – Distributing the Command
d. Exercise

9. Introduction to Object-Oriented Programming
a. Trip on the Carpet – What is OOP
b. The Pieces of the Puzzle
c. Classes

i. Objects
ii. Procedures

iii. Functions
iv. Variables
v. Properties

vi. Events
d. How OOP Differs from Authorware
e. Exercise

10. Introduction to Borland Delphi
a. Start at the Beginning – Basics of Delphi
b. The Integrated Development Environment (IDE)

i. Control (VCL) Palette
ii. Object inspector

iii. Code view pane
iv. Form designer

c. Object Pascal Language
d. Exercise

11. Creating your first U32: Working with Files
a. Starting a New U32 Project
b. Using the Resource Editor

i. Editing the rc file in Notepad
1. Declaring Functions
2. Arguments and Return Values
3. Function Descriptions

ii. Compiling the Resource file
iii. Compiling the U32
iv. Testing the New U32

c. Exercise

Day 3 – Building Extensions with Delphi and Visual Basic
Creating Knowledge Objects and Commands in Delphi
Creating ActiveX Controls in Visual Basic

12. Using the Knowledge Object SDK for Delphi
a. Identifying the 5 Components of the KO SDK

i. KnowledgeObject
ii. WizardControler

iii. WizardHeader
iv. WizardNavigator
v. WizardLabel

b. Exercise

13. Creating Commands in Delphi
a. Similarities to Creating Knowledge Objects
b. Exercise

14. Introduction to Visual Basic
a. Basics of Visual Basic

i. The Integrated Development Environment (IDE)
ii. The Visual Basic Language

b. Creating your first ActiveX control
c. Distributing your ActiveX controls
d. Exercise

